Pavements - GPR (Concrete Pavement Defects)

Target of Investigation

Ground penetrating radar (GPR) can be used for a range of surface and subsurface investigation applications for concrete pavements. For condition assessment of the concrete surface course of pavements, GPR can be used for the following applications: 

  • Detection of corrosion, potential delamination, and concrete deterioration in reinforced concrete pavement slabs.(1) 
  • Detection of serious debonding, honeycombing, and voids in concrete pavement slabs.(1) 


GPR testing is a widely used nondestructive evaluation technique for detecting subsurface structural elements and anomalies in concrete pavements. Two types of GPR systems are available: air coupled (figure 1) and ground coupled (figure 2).. 

© 2013 TRB. 
Figure 1. Photo. Air-coupled GPR system mounted on a vehicle.(3) 
© 2013 TRB. 
Figure 2. Photo. Data collection with a ground-coupled GPR system.(2) 

Air-Coupled GPR 

Air-coupled antennas are noncontact systems (i.e., they do not touch the surface during surveying). Air-coupled GPR systems are usually faster than ground-coupled systems; generally, they are used as a scanning tool to indicate locations where indepth testing with other systems (including groundcoupled GPR) is needed.(4)  

Ground-Coupled GPR 

Ground-coupled antennas, unlike air-coupled systems, must remain in contact with the surface while surveying. They are able to detect defects containing sizable air pockets or significant moisture under the surface. GPR signals are reflected at layer interfaces (including objects and defects) where different dielectric constants exist within the pavement. The collected data are processed and analyzed to create a condition map of the pavement or an image of the subsurface defects. 

Physical Principal

GPR operates by sending discrete electromagnetic wave pulses (with a frequency range of  
100–5,000 MHz) into pavement and then capturing the reflections from layer interfaces or other reflectors within the structure. Radar obeys the laws governing reflection and transmission of electromagnetic waves and is affected by the dielectric properties of the material: conductivity and the dielectric constant.(1) At each interface, part of the incident energy will be reflected back, and part will be transmitted beyond the interface. The ratio of reflected to transmitted energy depends on the contrast in dielectric properties of the materials on either side of the interface. 

Air-Coupled GPR 

As shown in figure 3, the largest peak of air-coupled GPR is the reflection from the pavement surface. The amplitudes before the direct couple are internally generated noise, and they should be removed from the trace prior to signal processing. Reflections that occur after the surface echo represent significant interfaces within the pavement, and the measured travel time is related to the depth of the defect.  

Source: FHWA. 
A. GPR propagation and reflection. 
Source: FHWA. 
B. Multiple GPR A-scans. 
Figure 3. Illustrations. Principle of air-coupled GPR.(4) 

Ground-Coupled GPR 

The physical principles of ground-coupled GPR systems are similar to those for air-coupled GPR systems. Although slow compared to air-coupled systems, ground-coupled systems provide better depth penetration and a higher amount of readings. Thus, ground-coupled systems are better suited for in depth data collection and defining subsurface interfaces or defects. 

A GPR signal attenuates as it travels in a structure. Signal attenuation depends on geometric attenuation, signal scattering, reflections, and thermal losses. Two-way travel time and reflection amplitudes are recorded with a receiver antenna. When measurements are made over sequential survey points, they can be viewed as a GPR B-scan or profile (figure 4). Rebars and dowels are seen as bright hyperbolas. For reinforced concrete slabs, corrosion can be estimated based on rebar reflection. Heterogeneities, such as voids and water, have different dielectric values from the pavement material; GPR can show irregular reflections caused by these heterogeneities. 

Source: FHWA. 
1 ft = 0.3 m. 
Figure 4. Graph. Example GPR B-scan. 

Data Acquisition 

Manufacturers of GPR (air and ground coupled) recommend following their system-specific testing procedures when collecting data. These procedures are available in the user manuals supplied by manufacturers. 

Data Processing 

Data processing should be performed by personnel with extensive training and experience. Data processing can be done using analysis software. Preprocessing, which does not change the signal content of the original data, includes data channel splitting, data scaling, data reversing, and zero-level correction. Processing operations consist mainly of filtering operations and amplitude and dielectric value calculations. The primary objective of processing is to make GPR data more informative and easy to interpret. Figure 5 shows raw, preprocessed, and processed data. Software can be used to “pick” individual objects for analysis and to calculate the depth of suspected defects or layers using the two-way travel time. For jointed reinforced and continuously reinforced concrete pavement, corrosion condition assessments can be performed based on rebar reflection attenuations. 

© 2014 TRB. 
A. Raw GPR data. 
© 2014 TRB. 
B. Preprocessed GPR data. 
© 2014 TRB. 
C. Processed GPR data.  
Figure 5. Screenshots. Raw, preprocessed, and processed GPR data.(3) 

Data Interpretation 

Data interpretation should be performed by personnel with extensive training and experience. Defects, such as voids, can be visible in GPR B- and C-scans. Figure 6 is an example of concrete pavement B-scan showing void under dowels. Voids tend to appear as pronounced, irregular bright-spot anomalies with higher amplitudes than the surrounding material. Internal thicknesses of voids are difficult to estimate because the bottoms of voids tend not to be imaged by GPR data. 

Source: FHWA. 
1 m = 3.3 ft. 
Figure 6. Graph. GPR scans showing layers and a potentially voided (bright) area in a concrete pavement slab. 


Advantages of GPR include the following: 

  • Well-established field data collection processes. 
  • Rapid test methods. 
  • Reliable and repeatable results. 


Limitations of GPR include the following: 

  • Defects (delamination and voids) are detectable only if they contain significant air pockets or are filled with water.(2) 
  • Air-coupled GPR systems should not be relied on to determine depths of defects. 
  • Extensive training and experience are required for operation, data processing, and data interpretation. 
  • Steel reinforcement mesh in the surface course may prevent signal penetration. 
  • Salts in concrete (from deicing operations or seawater) may cause signal penetration problems. 
  • External electromagnetic radiation (from cell phone, radio, and television antennas) can cause signal degradation. 


  1. Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., Shokouhi, P., Taffee, A., and Kutrubes, D. (2013). Nondestructive Testing to Identify Concrete Bridge Deck Deterioration, Report No. S2-R06A-RR-1, Transportation Research Board, Washington, DC. 
  2. Heitzman, M., Maser, K., Tran, N.H., Brown, T., Bell, H., Holland, S., Ceylan, H., Belli, K., and Hiltunen, D. (2013). Nondestructive Testing to Identify Delaminations Between HMA Layers, Report No. S2-R06D-RR-1, Transportation Research Board, Washington, DC. 
  3. Wimsatt, A., White, J., Leung, C., Scullion, T., Hurlebaus, S., Zollinger, D., Grasley, Z., et al. (2014). Mapping Voids, Debonding, Delaminations, Moisture, and Other Defects Behind or Within Tunnel Linings, Report No. S2-R06G-RR-1, Transportation Research Board, Washington, DC. 
  4. Arnold, J.A., Gibson, D.R.P., Mills, M.K., Scott, M., and Youtcheff, J. (2011). “Using GPR to Unearth Sensor Malfunctions.” Public Roads74(4), Federal Highway Administration, Washington, DC.